
Practice #6
Create Performance Task



AP CSP Create Performance Task
Part of the AP Exam is to create a 
program that meets specific 
requirements:

● Creates a list
● Uses a list in a meaningful way
● Has a function with a parameter 

○ Parameter is used in an if statement
● Function has:

○ If statement
○ Loop



AP CSP Create Performance Task
For this project, you will:

● Start a new project that will create and 

use lists

● Be a fun memory game

But when you are finished, the program 

won’t meet all the requirements for the 

Create PT. We will then discuss how you can 

modify it to meet all the requirements.



Simon Memory Game

Are you familiar with the Simon 
Memory game?
● A color shows and a sound is made
● With every round, a new color and 

sound is added to the sequence
● The player has to copy the pattern
● One wrong move and you lose

For this Practice PT, you will create this 
game, simplified, with just color pixels 
and four buttons.

http://www.youtube.com/watch?v=5T-TgdrF7rw


Simon Memory Game

Think about the steps needed for the game
● Generate a random pixel (0-3)
● Use a list to store the pixel
● Traverse the list to display the sequence
● Player’s turn: compare each button press with the list
● If each button press is correct, add to the sequence
● Otherwise, end the game

Let’s get started!



Start a new project

● In CodeSpace go to Mission 9, Objective 8

● Start a new file

● Name the file “Create_PT_Practice6

● Add a comment block at the top 

● Import the modules you will need

● Create a variable for the delay (you can 

start with 1 as the value, and adjust as 

you work on the code)

● Create a list for the sequence of pixels

Step #1



Start a new project

● Create an intro() function

● Create an ending() function

● These can be really simple right now, and 

you can improve them later

● Right now, you just want them to show so 

you know when the program begins and 

ends

Step #1



Create a function for 
Simon’s turn
● Create a function that will:

○ Clear the screen

○ Display “Simon’s turn”

○ Get a random pixel (0-3)

○ Append to the list

○ Traverse the list and light up 

each pixel

● You should be able to do most of this 

on your own – use the code as 

needed

Step #2



Create a function for 
Simon’s turn
● Test the code before you move on

● Add a main program

○ Call the intro

○ Start a while loop

○ Call the function

○ After the loop, call the ending

● Do you see the pattern growing?

○ Each time the loop starts over, 

the original pixels should light, 

with a new one at the end

Step #2



Step #3
Create a function for 
your turn
● Create a function that will:

○ Clear the display

○ Display “Your turn”

○ Traverse the list
■ Get a button press from the user
■ Compare the press with the item 

in the list
■ If correct, light the pixel and 

continue
■ Otherwise, end



Step #4
Get the guess (button press)
The pixel is a number, but a button press is not. 

You need to change a button press to a 

number.

● One way to do this is to use an if statement

● Decide what buttons you want the user to 

press

Here is what I am using, 
but you can use your own 
button configuration:

BTN_L

BTN_R BTN_A

BTN_B



Step #4 Get the guess (button 
press)
● Create a function for this

● Use a while loop

● Assign the pixel number to the button 

press

● Break after each possible button press

● At the end of the function

○ return guess



Step #4 Get the guess (button 
press)
● Call this new function in your_turn() 

function

● Remember – it returns a value, so it 

must be part of an assignment 

statement



Step #4 Get the guess (button 
press)
● Call your_turn() in the main program

● How does the program work?

● If you guess all the buttons correctly, 

does it keep going?

● If you press a wrong button, does it 

stop?



Step #5 Stop the game
Hopefully you noticed that the program 
works correctly as long as the correct 
buttons are pressed. But… when the 
wrong button is pressed, simon’s turn 
keeps going.
● The while True loop needs to change 

so that it ends when the wrong 
button is pressed

● You can use the same technique that 
you used in the Practice Extra lesson



Step #5 Stop the game
● Change the while loop in the main 

program to use a Boolean variable



Step #5 Stop the game
● In your_turn(), change the value of 

correct_guess to False if the button 
pressed is incorrect

● It is a global variable – remember 
what you need to do?

● Test the program again
● Does the game

○ keep going while guesses are 
correct?

○ stop working when guess is 
incorrect?



Step #6 Play again
If you finished the Practice Extra lesson, 

you learned about using a Boolean variable 

and while loop to play the game again.

● Can you use that technique to play the 

game again without restarting the 

code?

● You already have one Boolean variable 

and while loop, but you can have 

another



Step #6 Play again

● Create another Boolean variable in the 

main program

● Use another while loop in the main 

program 

● Be careful with your indenting!!



Step #6 Play again
● Create the play_again() function, just 

like the ones from the Practice Extra 

lesson

○ If button A is pressed, you want to 

start over, so initialize the 

sequence list to empty

○ If button B is pressed, change the 

value of continues to False

○ Both sequence and continues are 

global



Step #7 Create PT Requirements
● Do you remember what the 

requirements are for the Create PT?
○ Creates a list

○ Uses a list in a meaningful way

○ Has a function with a parameter 

■ Parameter is used in an if 

statement

○ Function has:

■ If statement

■ Loop

● Which ones are met in this program?



Step #7 Create PT Requirements
● The game has a list that is created and 

used in a meaningful way, but it still 

needs a function with a parameter, loop 

and if statement.

● What are some possibilities?

● Look at Create_PT_Practice3 and 

Create_PT_Practice4

● Create PT requirements:
○ Creates a list

○ Uses a list in a meaningful way

○ Has a function with a parameter 

■ Parameter is used in an if 

statement

○ Function has:

■ If statement

■ Loop



Step #7 Create PT Requirements
● Look at Create_PT_Practice3 

● This program gave the user a choice 

between easy and hard

● The choice was passed to a parameter

● The parameter was used in an if 

statement to set the amount of delay

● The function has a loop to traverse the 

list



Step #7 Create_PT_Practice3

Function with parameter, if and loop

Function call



Step #7 Create PT Requirements
● Look at Create_PT_Practice4 

● This program included a global variable 

for count

● count was incremented for every 

correct “guess” 

● count was passed to a parameter in 

ending() or results() and used in an if 

statement

● The function used a loop for running 

pixel lights



Step #7 Create_PT_Practice4

Function with parameter, if and loop

Function call

Count is incremented



Step #7 Create PT Requirements
● You could add either of these coding 

elements to your game to meet the 

requirements:

○ Add a choice of easy or hard

○ Add a counter and results() 

function that uses the counter as a 

parameter in an if statement, and 

add a loop for the lights

● You do not need to add this to your 

code now. It is an option for the actual 

Create PT.

● Create PT requirements:
○ Creates a list

○ Uses a list in a meaningful way

○ Has a function with a parameter 

■ Parameter is used in an if 

statement

○ Function has:

■ If statement

■ Loop



And now you have another Create PT practice
Congratulations!
By completing this practice project you 
have prepared for the PT by:

● Creating a list (Mission 7)
● Using the list in a meaningful way
● Creating a function with a parameter
● Calling the function
● Using the parameter in an if 

statement (my_choice)
● Using sequence and selection in the 

function


